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B CONFIDENTIAL

U.D.C. 623.4.081:623,451~519:623.562

Technical Note No. G.W.120

June, 1951

ROYAL AIRCRAPT ESTABLISHMENT, FARNBOROUGH

Further studies of the design of guided weapon
warheads, with a description of a nomographic
method of celculating lethality

by

J.X.S. Clayton, B.A., G.C.A., Ruston, B.Sc.
F.I. Reynolds, B,A, and V.R,3. Hynd, M.A., B.Sc.

R.A.E. Ref. GW/S.100/10/26

SUMLLARY

The nomogram described in this report has proved itself in regular
use over a period of some months, particularly because it presents a
number of the standard results employed in lethality assessment in a
form at once readily accessible and suitable for application to a wide
range of calculations; results obtained from it havc led to the follow-
ing conclusions:- :

(1) The optimum fragment mass to attack the crew and cngines ofi
a heavy bomber aircraft is 1 oz, unless it is certain that the crew is
not protected by armour when smaller sizes, possibly as small as /34 0z,

would be better.

(2) It would be profitable to attack light-cased H.E. bombs
within the aircraft using & oz fragments having an initial velocity of
8000 ft/sec.

(3) If the warhead were filled *ath Torpex rather than T.N,T,
there would bc a saving in total weight of 10% or possibly mare. For
R.D.X./T.N.T., 60/40, the corresponding saving would be about 5%.

(4) Hor % oz fragments doublc wire-winding does not seem to be a
practicable method of fragment control within the range of warhead
dimensions considered, but for a Warhead designed to attack moderately
soft targets controlled to give 1/16 oz fragments the method might be
used with advantagc.
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i’ Introduction

An earlier reportl described a theoveticel method of celculating
the survival chance of a typical aircraf't, cxposed to the fregmentation
of a cylindrical guided missile -iarhead, under certain assumptions of
which the chief were:-

(1) that the warhead is detonated by a proximity fuze charac-
terized by a constant looking engle of 709, and

(ii) that the vulnerable components of the aircraft may rcasonably
be supposed spherically symmetrical and concentrated at the
same point in space.

The theory was applied to assess the orobability of survival under
conditions defined by particular valucs of certain parameters such as
fragment mass, total warhead weight, charge/casc weight ratio, fuze
burst range and height of attack: the criteria for destruction of the
whole aircraft were taken to be:-

) lethal damage to at least two of the four enginecs, or
(ii) injury to the two pilots sufficient to incapacitate both, or

(iii) at heights greater than 43,000 £t only, the penetration of
the pressure cabin transperencics.

The usefulness of the results in Ref.l wes limited, to some cxtent,
by the arbitrary renges of values chosen for the paramcters and it was
rccognized, as the computation proceeded, not only that it would be
necessary to enlarge the scope of the original work but also that the
potential application of the method might be widcned if the fundamental
results were presented graghically as a nomogrem. The results of such
additional work arc published in this note and the opportunity has been
taken of presenting thec nomogram at the semc time: its use makes additions
and subtractions the only erithmetic processes requisite in the calcula-
tion of the survival chance, thus facilitating greatly the task oi the
average computer.

It is not necessary to repeat the essential theory, which was
developed fully in Ref.l, and the notes that follow will be devoted to
details of the new work; this comprises methods of calculating:-~

(i)  the survival chance of & thin cased H.E. bomb as & distinct
subtarget,

(ii) the effect on the total survival chance of substituting
explosive fillings other than T.N.T. in the guided missile
wearhcad,

(i1i) the usc -of annular charges in the guided missile warhead, and
(iv) the use of wirec winding as a method of fragment control.

The congtruction of thc nomogram and the method of usc, step by step,
may be- deduced from Taeble V, and the specimen work-sheet, Table VI.

Therc are, in addition, a number of changes of a detailed naturc
to bc recorded but two restrictions must still be acccepted: firstly it
has not been possiblc to consider morc than two fragment shapcs (as
distinet from sizes), the large incrcasc in the number of graphs required

- 5 =
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Jor further ceses being considered unreasonable, and, in consequence,
calculations can be perfarmed only for fregments controlled to cubes or
2:2:]1 parallelopipeds; secondly the results still apply to cylindrical
warheads only. Certain restrictions were placed on warhead dimensions
in the earlier workl which have been accepted herc, namely that the
length should not exceed 24 ins, approximetely, and that the diameter
should be between L ins and 20 ins. :

In all calculations relating to the H.E. bomb the bomb filling was
assumed to be T.N.T,; the warhcad was also supposed to be filled with
T.N.T. except in a few instances where the filling is mentioned by name.
Most of the results refer to explicit miss distances and it must be
remembered, when comparing thesc with others referred to R.}M.S. miss
distances, that the lethalities may appear to differ considerably: some
indication of the effect of these different methods of presentation may
be obtained by comparing figures 2.06(a) and 2.06(b).

2 The fundamental theory: changes and additions to the carlier theory

2.1 The wider range of parameters

It is a notable adventage of the nomographic method that ,several
parameters appearing as arbitrary constents in any given calculation
enter only at the final stage. Among these are the mean vulnerable
areas of the various subtargets and it has been decided to make use of
this property by revising the figures originally used* to accord more
closely with the most recent experimental results?s3: (in particular “it
seems that the compressor is the only component of a jet engine which
can be assumed to contribute effectively to the vulnerability for British
category C damage and, even so, fragments whose mass is 1§ oz or less do
no damage) . Slrularly it would be a simple matter to change the penetra-
tion criteria. This increased flexibility, in conjunction with a change
in the main computing scheme (to be described below) such that survival
chances are calculated for each subtarget individually, makes it possible
to use the nomogram to assess the vulnerability of a number of aircraft
types.

The graphs have been preparcd in such a way that engagements at
any altitude up to 60,000 ft may be considered; two minor improvements
in the construction of the statistical model pcrmlt varietion in the
proportion of the warhead oase assumed to break into Iragments.of the
desired size (previously fixed at 2) and also the use of the true dis-
tribution function of fragment prcsentcd area, g(a_—,_ , rather than a
linear approximation.

2.2 The survival chance of individual subtargets

It is convenient to be able to assess the contributions to the
total destruction chance of each separate subtarget and, since the
individual chances are readily combined to give the total, a small
modification has been made in the computing process in order to deter-
mine them. It follows immediately from the theory alrecady described**
that, if the probability of destroying at least h of a set of k
identical components, cach presenting an area A , be denoted by
P(h:k), then

X Ref.l, P.12, Revised figures appear in Tablé I of' this note.

- Ref.1l, Section 8.

4=

SECRET - DISCREET



SECRET - DISCREET

Technical Note No. G.W.120

e A

P(2:4) =1 - Le - 3e (el
: TR
P(2:2) =1 - 2¢ Are + e ‘Qr (2.22)
- nh
=GP R R (2.23)

where n represcnts here the number of cffective fragments and the
notation is, otherwise, that previously used.

In the case of a four-engined aircraft the quantities P(2:4),
©(2:2) and P(1:1) represent, respectively, the chances of destroying
more than two of the four cngines, of dilsabling cach of the two pilots
and of penetrating the transparencies (or cxploding the bomb); but, if
a two engined aircraft controlled by one pilot only were under considera-
tion, then the probabilitics of causing lethal damage to the engines and
crew would be P(1:2) eand 2(1:1) respectively.

Defining the total chance of destruction by P then, for a four-
engined aircraft,

(Li= 2 = (i = Pgl2:)) {3 = Bp(2:2)) (L = Ppflen)) (L= Ep(Hell) d(R-28)

Here the subscripts e, ¢, t and b, referring respectively to the
engines, pilots, transparencies and bomb load, have been introduced to
eliminate all chance of ambiguity.

2.3 The bomb load as a subtarget

Although there remains a measure of disagreement as to the best
method of assessing the chance of exploding a high explosive bomb by
fragment impact it is thought that, under the conditions envisaged -
that is, in the instance of a light cased bomb - an energy criterion is
more nearly representative of actual conditions than a penetration cri-
terion. That employed in the nomogream is based upon the results of

K.S. Jones¥ and may be written,
if 4mv? < 2.6.10° then By = 0
if 4nv2 > 5.0.100 then Py =1 (2.31)

Ve - 2.6. 106

if 2.6.10° < V2 < 5.0.10% then By =
2.1,.106

where Pd = the probability of detonation
m = fragment mass (oz)
v

1

velocity at which the fragment strikes the bomb case (ft/sec)

..7..
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This is believed to be a good epproximation if the bomb case is less than
% in. thick and for fragment masses of L oz or greater.

In general the fragment must penetrate one of the bomb doors
before it strikes the bomb. As yet no satisfactory rclation between
the fragment velocities before and after penctration of a thin plate
has rceeived generel acccptance and it has been decided, therefore, as
an approximation to define thc loss in velocity by the loss in momentum
supposed equal to the minimum required to penctratc a bomb door consist-
ing of a dural platc, 0.056 ins thick.

The chancc of destroying thc bomb load, P, is then expressed by
the relation,

By, =P5 - By (2552)

wherc Ph = chancc of the fragment striking the bomb load which
: has prescnted arca Ay
_ nhb
= i o (2.23)

2.4 The cffect of changing the H.E. filling of the warhead

The assumption was made in the earlier salculations!l that the
missile would be charged with T.N.T. However, the use of more powerful
explosives will make it possible to achieve a higher lethality for the
same warhcad weight and the nomogram has been constructed in a manner
which allows this effect to be eveluated. The only important difference
in method occurs in the calculation of initial fragment velocity. A
considerable amount of field work has been done to establish a connection
between fragment velocity and charge/casc weight ratio and the relation
previously employed* isg thought to be a satisfactory representation
provided that the 1ength/diamcter ratio of the warhead is fairly large
(sece 2.7): moreover, it has been shown that, to a reasonable dcgree of
approximation, the velocities generated by any two cxplosives in cylin-
drical warheads of the same charge/case weight ratio are, themselves,
in a constant ratio. Applying the latter conclusion, it follows that
fragment velocities due to any explosive other than T.N.T. are found by
mltiplying the corresponding T.N.T. velocities by a constant factor,
A, say. Values of A for a number of explosives are listed in
Table III5’6. It is assumed, of course, that in fixing or calculating
the charge/case weight ratio due account is teaken of the chenge in
density of the filling.

25 Annular warheads

The general theory has been applied to examine the effect of an
annular hollow charge on warhead performance and the reasons which might
Justify the design of such a charge have been enumerated**, The comput-
ing process is identicel to that employed for a solid warhead except that

* Ref.1l P.16 and Fig.7.
L Ref.1l Section 10.

S e
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a value must be assigned to one more parameter., namely, the internal
redius of the annulus; but the relation between fragment velocity end
charge/case weight ratio must be revised and, having regerd to the very
small amount of evidence in support of existing theories, it is thought
that the hollow charge relation previously used is a satisfactory
approximation*, subject to the proviso that the amnular internal radius
should not be less then one quarter of the external radius. It is
pertinent to note that the weight of thec material lining the arnulus or
of any substancec within the annulus is ncglected in reckoning the
charge/case weight ratio.

2.6 liethods of fragmentation control

Complementary to the grooved charge method of fragmentation control
are a number of methods depending on the use of notched wire, rings,
cast pellets, punched holes or the use of spot hardened steel in the
manufacture of the warhead. case.. A series of experiments is in progrcus
in the United States with the object of determining the percentage of the
case welght which can be converted to controlled fragments and the results
so far available in this country show that although the punched hole and
spot hardening methods are diseppointing vercentages of the order of
80% may be obtained using rings?:8:9 The anly modifications to be
observed in the computing process as defined previously1 are,

(i)  the use of thc appropriate factor f defining the proportion
of fragmenting metal converted to controlled fragnents,

(ii) thc inclusion of the weight of any liner with the weight of
metal in calculating the charge/case weight ratio, and

(iii) the possibility of using cubical fraguents even when the
fragment mass is less than » o0z

The nomogrem is so constructed as to permit these modifications. If,
however, it were required to study eny fragment shape, other than the
cube and the 2 x 2 x 1 rectangular parallelopiped which has its larger
face parallel to the warhced surface, certain modifications would become
necessary whose extent can be ascertained by inspection of the formulac
given in Table V. For want of bettcr information thc curves for initial
fragment velocity previously used have been assumed valid, remaining
unmodified by the method of obtaining fragmcntation control.

2o [/ The initial fragment velocity theory for a short warhead

n

At the present time interest is increasing #¥ke the design of war-
heads which have small values (€ 1) of the length/diameter ratio. The
relations between initial fragment velocity and charge/casc weight ratio
used in previous workl and illustrated in this note in figures 1.091
and 1.092 were intended to apply to long cylindrical warheads; experi-
mental evidence which has-beccome available recently7:lo suggests that
the velocities have been over-estimated whenever the length of the war-
head was less than (approximately) twice its diameter.

The new information is contained in the results of two series of
experiments recently completed in the U.S., one at the Ballistic
Research Laboratories where a trial warhead was designed in such a way
that the detonation wave was almost flat as it passed through the short
warhead** and a second, which may be considered more realistic, at the

i Ref.1l, Fig. 90

ok Ref.7, Fig. 6.
...9...'
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Naval Proving Ground, where the initiation of the warhead was arranged 3
to occur close to that section of the case where the fragments whose

velocities were to be measured originated, so simulating more accurately

the conditions 1likely to be encountered in practice. The résults of -
both have been used to compute curves of the gquantities Yl’ and Yo,

defined as, respectively, the ratios of the truec initial wveloeity,
according to the two sets of cxperimental data, to that initial velocity
predicted by the long cylinder theory: ¥y is, of course, a function of
the length/diamcter ratio which tends to unity as that ratio increases.
Graphs of ¥y and Yy appear in figure 1.093.

In some of the calculations pertaining to this note the correction
factor based on the B.R.L. data was applied and the use of Y, 1is to
be understood wherever rcference is made in subscquent paragraphs to
the ¢ffeet of the length/diameter ratio. The N.P.G. data werc not
available when the work was carried out, but the curve based on them
is included as being more likely to represent the actual conditions
during the detonation of a short warhead: but it should be emphasized
that both curves arc likely to be revised as more data become available.

3 Results and conclusions

3.1 The effects of fragment mass on the vulnerability of individual
components

It is of considerable interest to know the magnitude of the
relative contributions of individual subtargets or groups of subtargets
to the probability of destruction of the whole aircraf't and the manner &
in which they vary with the mass of the striking fragment. Typical
curves are presented in figures 2.0l and 2.02 corresponding to a warhcad
weight of 150 1b at a miss distance of 90 ft. In figure 2.02, which
refers to high altitudc attack, the chances of incapacitating the pilots
calculated under two sets of conditions, cither allowing the possibility
of an cxplosive decompression following the shattering of the cabin
transparencies or not, are both shown.

In view of the steep rise in the pilot vulnerability curve corres-
ponding to the lower fragment weight, and, therefare, to a higher fragment
density, it has been thought wise to illustrate the effect of armour: it
has been assumed that the pilots arc completely cencased within a layer
of dural, 3" thick, although clesrly such an arrangement is not possible
in practice. The pilots having been armourcd thus the engines remain as
the most vulnerable component (negleeting the bomb load which will be
considercd in greater detail in the next section) and it is fair to
conclude that the fragment weight should be of the order of ¥ oz, the
optimum against the engines and sufficient to give at lecast some chancc
of incapacitating the pilots c¢ven when they arce modecrately armoured.

3,2 H.G, banb vulnerability

It is evident that the survival chance of the aircraft must diminish
considerably when it carries a light-cased H.E. bomb. The method of
assessing bomb vulnerability having been described in a previous section
it remains to illustrate its efiect, but first this point must be made: .
the conditions of fragment strike best suited to detonate the bomb and
to destroy the othcr components here considered are unlike and it follows
that the warhecad design may be influenced by the strategic decision as
to how far it is desirable that the def'ences should be particularly
effective against aircraft carrying light-cased H.E. bombs.

- 10 -
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It has been found that the best solid warhead of given weight to
attack an aireraft (whose bomb load is neglected) is that giving the
greatest Iragment density, namely, the longest permissible, under the
restrictions on length and diameter already noted, which has been that
with the lowest cherge/case weight ratio in the range of parameters so
far consideredl. The chance of detonating the bomb improves, however,
as the charge/ease weight ratio is inereased, due to the higher striking
velocity, and in most of the eases studied there has been a tendeney for
the optimum to be raised above the minimum defined by the lower limit of
4 ins imposed on the external diameter of the case: the extent is illus-
trated in figure 2.04. As the ratio is increased beyond this optimum
the reduction in fragment velocity associated with small values of the
warhead length/diameter ratio is sufficient to causc the total chence of
detonation to diminish rapidly. Although these conclusions suggest that
the differcnces between warheads intended to attack aircraft earrying
and not carrying H.E. bombs might be considerable the results diseussed
below show that, in the range of paramcters eonsidered, they arc in fact
usually small.

Figures 2.0l, 2.02 and 2.03, illustrating the effect of the varia-
tion of fragment mass on the lethalities oi the bomb alone and of the
whole aircraft, indicate that a fragment mass of ; oz is likely to be the
most generally useful and, accordingly, most of the results that follow
rcfer to solid warheads controlled to give % oz (2:2:1) fragments (it
being assumed that 75% of the metal in the warhead sides is converted
into controlled fragments). It may also be concluded that fragnents
weighing 1/16 oz or less arc incapable of damaging the bomb and it

’ appears that the method of optimizing the charge/case weight ratio has
little effect, particularly at high eltitude. This impression is con-
firmed by figures 2.05 and 2.06, graphs of probability of destruction

- against miss distance, which are also intended to show what increase in
the probabilities of destruetion is to be expected when the aircraft
carries a load of thin-cased H.I. bombs. By eomparing these to graphs
an estimate may be made of the importancc of the value attachced to the
solad angle 0 defining the {ragment zone., That appropriatc to figure
2.05 is the 'optimum' in the sense of Ref.l (that is to say it is such
that the detected point always lies vwithin the fragment beam vhatever
the directions of flight of the missile end target aircraft) and varies
with the conditions of attack*. When the magnitude of the target is
taken into account, however, the constant velue of 4 steradians used in
prepering figure 2.06, is probably more corrcct. The e¢ffects on the
welght of the warhead of assessing the bomb load as vulnerablc and of the
two methods of optimizing the chargc/casc weight ratio may be estimated
from figure 2.07 while the¢ order of differencc in the probability of
destruction duc to the use of the constant ¢ rather then the variable
0 mey be determined from figure 2.08.

Fo The comparative lethalitics of warhcads vith various explosive fillings#

The substitution of an explosive more powerful then T.N.T. serves to

* The optimum valuc of Q so defined will hereafter be referred to briefly
as the variable Q and the term fixed Q will be assumed to imply a con-
stant value of L steradians. :

A In the numerical work relevant to this section no account wvas taken of
the reduction in fragment velocity due to small velues of the warhead

- length/diameter ratio (cf. section 2.7). It should be noticed, also,
that the values of the charge/ease weight ratios used were the optima for
T.N.T. filled warheads; in order to maintain the same values of the total
warhead weight the dimensions of warheads filled with other explosives
necessarily had to be different and, consequently, the limitations set
out in Ref.l, namely £ < 24" and 2" € R < 10", have not been strictly
observed in all instances.
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increase the initial fragment velocity at a given charge/case weight ratio
(in the menner described in section 2.4). Under the fuze matching con-
ditions implied by the use of the variable Q , as previously defined in
this note and in Ref.l, the probability of destruction is increased as

a result of the greater fragment velocity and the narrower permissible
fragment zone but for a fixed Q - the former factor only contributes:

the curves in figure 2.09 confirm that the increase is greater when Q

is variable but it must be repeated that the results based on variable

0 seriously over-cstimate the advantage to be gained against a target

of finite size. )

Some saving in weight might thus be achicved by the use of a more
powerful explosive and it is shown in figure 2.10 that the amount is
sensibly independent of miss distance, of the altitude of attack and of
the level of the probebility of destruction when the weight of the
T.N.T. filled warhead is 150 1lb; however, figure 2.1l suggests that for
other warhead weights the probability level does affect the percentage
of weight saved. TFigure 2.12 shows the proportional saving in warhead
weight and incrcase in miss distance permissible to attain a given
lcthality level: the effects of varying the three parameters, warhead
weight, miss distancc and target altitude are so small that the curves
plotted may be taken to represent all values in the ranges
100 1b € W < 250 1b, O0< S < 90 ft and h = 15,000 £t or 50,000 ft

but they are not valid for fragment masses other thamn I oz.

Breiis The optimum internal radius of a hollow cylindrical warhead controlled
to give = oz fragments

The calculations here described were intended to supolement an
clapilies studyl, which was restricted to % oz fragments, and to demonstrate
an important change in the order of the optimum annulus due to the inclu-
sion of an H.E. bomb load as a vulnerable component. Figures 2.13 and
2.14, from which the optima may be deduced, show the probabilities of
destruction of the aircraft without bomb load and of the bomb load alone,
to be expected at miss distances of 45 and 95 feet and at altitudes of
15,000 and 50,000 fcet: in preparing them it was necessery, at small
velues of the annular radius, to conpromise between the two initial
fragment vclocity thecorics appropriate to hollow and solid charges. None
of the warhcads represcnted has a length/diameter ratio as low as unity
and no allovance has been made for the fall-off in velocity associated
with small valucs of that ratio. In figure 2.5 the probability of
destruction of the aircraft and bomb as a single target are shown for
the same values of other parameters.

It is obvious that the optimum size of the annulus depends primarily
on whether or not the bomb is considered wvulnerable. It is believed that
the situation represented by these figures is close to the truth, despite
any doubt as to the general reliability of the detonation criterion; this
is so, not only because the assumption that the bomb has a thin case
reduces the relative importance of the alternative penetration criterion,
but also because the fragment mass herc considered is of the same order
as those occurring most frequently in penetration trials, a circumstance
which heightens confidence in the energy criterion in this particular
instance. It may be accepted, therefore, within the limits implied by
the choice of parameters in this study, that the warhead design should
depend fundamentally on the tactical use of the weapon envisaged: if the
design is intended to be particularly effective against H.E. bomb carry-
ing aircraft then the annulus should be small or, perhaps, non-existent,
whereas if the weapon is to be used against all bomber aircraft a large
annulus is likely to prove most satisfactory in the long rum.

- 912 &

SECRET - DISCREET



SECRET - DISCREET

Technical Note No. G.W.120

225 The practicability of double-layer wire-winding as a method of
fragment control in a short range guided missile

The success of a double-layer wire-wound werhead must depend on
the ability of the designer to provide fragments which arc, at onc¢ end
the same time, both sufficiently large and sufficiently fast to causc
lethal damage. If the weapon @nd corresponding warhead should both be
small the fact that fragment mass and velocity are interdependent is
likely to cause some difficulty: for the case thickncss depends directly
on the fragment sizc and itself implies a minimum radius and length/
diameter ratio in order to satisfy the velocity requirement. If the
warhead defined by thesc minima is larger than that which can be installed
no double wire-wound warheed cen satisfy the conditions; otherwise the
designer has a certain degree of choice.

A study has becn made of a 200 1b solid warhead in order to compare
the single and double wire-winding methods of controlling fragments to
a mass of ¥ oz. The casc thickness of the doublc wire-wound warhced is,
of coursc, twicc that of the single, and thc warhecad is of such a sizec
for the argument outlined in the previous paragraph to apply, under the
conditions stated: consequently the singlc is in this casc decidcdly
the better (the H.E. bomb being completely invulneresble to the double
wire-wound warhcad, indeed) end thc extent of its superiority is shown in
figurc 2.6. It has becn considered instructive to present in the same
figurc corrcsponding curves for 1/16 oz fragments; in this case the
indications arc that under ccrtain canditions the double wire-wound
warhcad is the better.

3.6 Conclusions and Summary

The nomogram described in this report has proved itself in regular
use over a period of some months, particularly because it presents a
number of the standard results cmployed in lethality assessment in a
form at once readily acccssible and suitable for application to a wide
range of calculations; results obtained from it have led to the follow-
ing conclusions:-

(1) The optimum fragment mass to attack the crcw and cngines of
a heavy bomber aircraft is 4 oz, unless it is certain that thc crew is
not proteccted by armour when smaller sizes, possibly as small as 1/%2 oz,
would be better.

(2) It would be profitable to attack light-cased H.s. bombs within
the aircraft using & oz fragments having an initial velocity of 8000 ft/sec.

(3) If the warhead were filled with Torpex rather then T.N.T.
therce would be a saving in total weight of 10% or possibly more; for
2.D.X./T.N.T., 60/L0, the corresponding saving would be sbout 5%.

(L) Tor i oz fragments double wirc-winding does not scem to be a
practicablc method of fragment control within the range of warhead
dimensions considered, but for a warhead designcd to attack moderately
soft targets controlled to give 1/16 oz fragments the method might be
used with advantage.
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APPENDIX

A list of the parameters used in the nomogram
together with a brief discussion of the

extent to which they may be varied

The following parameters are implieit in the graphs and cannot be
vearied: -

VM/VT = ratio,(missile veloecity)/(target aireraft veloeity) = 2.0
a = the fuze looking-angle =
P, = the density of mild steel = 0.28399 1b/cu. in
Ch = the atmospheric retardation eonstent at altitude h

= 0.005564 Ph/p

Similarly the energy eriterion of H.E. bomb detonation and the eriterion
to determine the residual velocity of a fragment which has penetrated
the bomb doors are invariable.

The following quantities may be chosen to suit any condition of
engagement, within reasonable limits:-

f = proportion of fragmenting mectal converted into eontrolled
fragments
h = height of attack
Ko/k = ratio, (thickness of liner)/(thickness of warhcad casc)
m = fragment mass
r = distance of burst from target
t = ratio, (end plate thickness)/(case thickness, k)
z = ratio, (density of H.E. £illing)/(density of T.N.T.)
CMN = ratio, (charge weight)/(weight of case, excluding cnd
plates but ineluding liner)
Ry = radius of annulus
W = total weight of warhead (exeluding eny material filling
the central annulus) i
N = ratio, (fragment velocity due to H.E. filling)/(fragment
veloeity dvue to T.N.T.)
Py, = density of lincr

Also the fragments may be cubes or (2x2x1) parallelopipeds, whose greatest
faces lie in the surfaecc of the case, and it is possible to examine the
effect of a single or double wire-winding. The quantitics A,z dcpend

on the type of H.E. filling considered.

However most of these restrictions only apply to certain graphs:
for example the value of the ratio VM/Vp quoted is only employed in the
calculation of Q aceording to the 'optimum' method of Ref.l. The
reader is referred to the equations and remarks in Table V for detailed
information.
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the mean presented area (sq.ft) of

the jth subtarget, and of loglo Aj; also of

the penetration constants and thicknessecs

for each subtarget

Component *Pilot ngine Transparencies| Bomb
Fragment Part shielded by ' _
Mass (oz) Dural | Perspex h < 43000 | h > 43000
% é No. 1.9 0.9 2.4 0 | 5.0 15.0
log 0.2788 | -0.0,58 | 0.3802 = b 0.6990 [ 1.1761
I ( No. 1.7 0.8 1. 44 0 A 15.0
(log 0.2304 | -0.0969 | 0.158L - 0.6990 | 1.1761
% 2 No. AT 0.7 0 OF W50 15,0
log 0.1461 | =0.1549 | = - oo 0.6990 | 1.1761
< 1/16 ( No. 1.3 0.6 0 0:| 5.0 15.0
( log 0.1139 | -0.2218 |- - 0.6990 | 1.1761
K; 700,8000% | 700,1800%| 6000 1800
Py 0.7,0.06 |0.7,0.5 0.31 G5
Kj. P 970 1390 1860 900
1og(Kﬁ. pj> 2. 9868 3.1430 | 3.2695 2.9542
|

¥ The criterion for incapacitating a pilot is couivalent to that for the
penetration of 0.7 ins of wood: the pilot is shiclded partly by 0.06 ins
dural plates and partly by thce cabin transparencics, herc supposed
perspex, 0.5 ins thick. If thce transparcncics arc included as a vulner—
ablc component that .part of the pilot shicldcd by them must be neglected
in the pilot lcthality asscssment. In the calculations relating to
armoured pilots (section 3.1) the value of ij'j must be increased

by the quantity 0.315 x 8000 to correspond to the greater thickness of

dural: thus
Kips = 3430 log Kjpj = 3.5428 (dural shielding)
. ijj = 3910 log Kipy = Fe 5522 (perspex shielding)
- 16 -
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TABLE IT

Values of k, the thickness of the werhead
case (in), and of logjpk: also of the

D

fragment parameters y;, yp, and y3*

~ Dimensions
of fragment
kxkxk |ExExE]| okx 2xxk
Fragment 2 2 B
mass (oz)
= ( No. 0.4792 0.958L 0. 3019
( log -0.3195 -0. 0184 -0.5201
I ( No. 0. 3803 0. 7607 0.239
( log -0.4199 -0.1188 -0.6205
3 { No. 0.3019 0. 6038 0.1902
Valuss (' log ~-0.5201 -0.2191 -0.7208
Rl 1116 ( No. 0.239 0.4792 | 0.1509
( log -0. 6205 -0.3195 -0.8213
1/32 No. 0.1902 0. 3803 0.1198
log ~0. 7208 ~0.4199 -0. 9216
L6, ( No. 0.1509 0.3019 0.0951
( log -0.8213 -0.5201 -1.0218
%I
ol ( No. 2.0 16.0 0.5 i
( log 0. 3010 1.2041 -0.3010 |
Values of Yo ( No 1.5 3.0 =6
| parameters ( log 0.1761 LT 0
y3 { No. 150 0.5 4.0
( log 0 -0. 3010 0.6021

* The quantities ¥is Yo and yz are parameters introduced to reduce
the number of dimensions in certain graphs and ere defined as follows:-

2k3 pn/m

e
'—J
1

- 17 -
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TABLE IIT

Values of A and =z

H.E. charge A 7
Amatol 0.87 1.0
oINS T 3L-(0) Lo ()
RDX/TNT 60/40 g 1. 0LL9
Torpex 1n2 1.1089

N\ = ratio, (fragment velocity due to H.E.filling)/(fragment velocity due
So T A. T, )
z = ratio, (density of H.E. filling)/(density of T.N.T.)

p, = density of T.N.T. = 0.0562). 1b/cu. in.

Sme=
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TABLE IV
Notation
Symbol Meaning Units
ay presented arca of fragment at the instant of impact sq.in
a4 ‘4 maxdmum value of a4 i“or which pcnetration is sg.in
eFs possible
a mean presentced arca oft fragment sg.in
b (as suffix) appropriatc to the H.E. bomb
c (as suffix) appropriate to the pilots
c atmospheric retardation factor at sltitude h
a (as suffix) eppropriate to dural bomb doors
e (as suffix) sppropriate to the engines
f properties of fragmenting metel converted into
controlled fragments
g(ai) distribution function of a4
h altitude of attack i
k thickness of warhead case in
ko thickness of liner in
L length of warhead (excluding end-plates) in
m fragment mass oz
n number of controlled fragments produced
p,(pj) thickness of the (j*1) subtarget in
13 distance of burst from target st
i ratio, (end plate thickness)/(case thickness, k)
t (as suffix) appropriatc to the cabin transparencies
i 2 p /m
. parameters, functions of fragment shape,
¥, ak p /m g tebulated in Table II
2
V3 m/k p,8 )
z ratio, (density of H.E. filling)/(density of T.N.T.)
A,(AJ.) meen presented vulnerable area (of the j'P sq. £t
subtarget) tabulated in Teble I
B loglo (n/Q I‘2)
c/w ratio, (charge weight)/(weight of casc, excluding end
plates but including liner)
E kinetic energy of fraguent ft/oz/sec

dynamic units
- 19 ~
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lieaning Units

factor diminishing A,(Aj), to account for the
nunber of fragments: falllng to penetrate (the
jth subtarget) at range r

th subtarget)

penetration constant (for the J
warhead length/diameter ratio
probability of destroying the target aircraft,as a whole
probability of detonating the H.&, bomb, given a
fragment strike

probability of a fragment striking the H.E. bomb

probability of destroying at least h of a set of
k identical subtargets

probability of ceusing letnal damage to the jth

subtarget

survival chance of the target aircraft, as a whole

1 - P(h:k)

survival chance of the jth subtarget

external radius of the warhead in
radius of annulus in
missile velocity ft/sec
initial static fragment velocity ft/sec

residual fragment velocity after penutratlon of dural ft/sec
skin

striking velocity of fragment ft/sec
velocity of the target aircraft ft/sec

total warhcad weight (excluding that of any material 1b
within the central annulus)

weight of charge | 1b
weight of the two end plates 1b
weight of liner. 1b
weight of side walls 1b

(W - Wg) /x>

- > (W + T ) SRS AR e

W \
iyl AW £

)
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Symbol lleanin Units

Y 2xt p. (B2

Y 2mt pp (Ra/K)2

Z logy, {Kp a; pp/m Vol |

a the fuze looking-angle , degrees

B static fragmentation angle of throw degrecs

¥y ratio (V,, experimentel)/(V,, predicted)

b length of the shortest edge of a fragment in

A ratio, (fragment velocity due to H.E. filling)/

(fragment velocity due to T.11.T.)
< 2

: Ek"‘cri’c/k

P density of warhcead charge 1b/cu.in

P, density of atmosphere at altitude h 1b/cu. £t

p,(p.) expccted number of strikes penetrating (the jth

- subtarget) '

P1, density of the liner 1b/cu. in

B density of the metal case 1b/cu. in

0 solid angle defining the fragmentation zone solid
radians

200 =
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T.N.G.W.120.
PROBABILITY OF DESTRUCTION
0 ,
FOR EACH FRAGMENT WEIGHT THE WARHEAD
IS THE LONGEST PERMISSIBLE AND, THERE-
FORE,HAS THE LOWEST CHARGE|CASE
WEIGHT RATIO PERMISSIBLE:(V REF.1.)
9
WARHEAD FILLING = T.N.T.
COMPONENT
.8 | |[BomMB (T.N.T. FILLEB)
2 [ENGINES
3 [PILOTS (UNARMOURED)
4 |PILOTS (PROTECTED BY & DURAL PLATE
J o ABIN TRANSPARENCIES ARE NOT INCLUDED
. T
‘5
&
NI
!
-3 | ‘
.2 \\
| \ 2
h—_~_---—-
- 7\ [ 3
/ 4
0 v T_-/
é'.‘ % & i FRAGMENT MASS (02) =
50 40 30O 20 CHARGE[CASE WEIGHT RATIO '8

FIG.2:Ol. VARIATION OF THE VULNERABILITY OF VARIOUS
COMPONENTS WITH THE VALUE TO WHICH FRAGMENT MASS IS

CONTROLLED FOR A

TARGET: TARGET ALTITUDE

(50 LB. WARHEAD ON A TRAJECTORY AT
A DISTANCE OF 90FT. FROM THE VULNERABLE AREA OF THE

15,000 FT.

-
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T.N. G.W. 120.

FIG.2-02.

PROBABILITY OF DESTRUCTION

i FOR EACH FRAGMENT WEIGHT THE WARHEAD IS
THE LONGEST PERMISSIBLE AND, THEREFORE,
HAS THE LOWEST CHARGE|WEIGHT RATIO
PERMISSIBLE  (V.REF.1)

‘9

WEAD FILLING = T.N.T.

"\\

1 COMPONENT

| [8oMB (TN.T. FILLED)

2 |TRANSPARENCIES
6 N 3 [ENGINES

PILOTS (CABIN SP) N E
\ 5 -] AL .

6 PILOTS (CABIN TRANSPARENCIES VULNERABL

‘5 e \ % WHEN THE TRANSPARENCIES ARE

. \ INCLUDED AS A VULNERABLE AREA
THE VULNERABLE AREA OF THE

: PILOT IS REDUCED TO THAT PART OF
HE WHOLE swegoeo BY THE

. LL CABIN.
i | TYQURALWALLS OF THE CAB

l \\ B e

.. S S

4
___—_—___-"-""‘“::g
&k 4 § 1 FRAGMENT MASS (02) i

{ 5040 30 20 CHARGE/CASE WEIGHT RaTIO V5

FIG.2-Q2. VARIATION OF THE VULNERABILITY OF VARIOUS

COMPONENTS WITH THE VALUE TO WHICH FRAGMENT MASS IS

CONTROLLED FOR A ISOLB. WARHEAD ON A TRAJECTORY AT A

DISTANCE OF 9O FT, FROM THE VULNERABLE AREA OF THE
TARGET: TARGET ALTITUDE, 50,000 FT.

w
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T.N. GW. 120.
FIG.2-O3
OPTIMUM CHARGE|CASE WEIGHT RATIO FOR ATTACK ONAIRCRAFT CARRYING HE.BOMB ————
OPTIMUM CHARGE (CASE WEIGHT RATIO FOR ATTACK ONAIRCRAFT NOT CARRYING HE.BOMB——
WEIG HT OF WARHEAD = I50LB.
PROBABILITY OF DESTRUCTION MISS DISTANCE #90FT. '\?F'.}U)DE
I FILLING OF WARHEAD (,2_[5Q000[BOMB INCLUDED
AND BOMB:- T.N.T. 3,4 |5,000 BOMB INCLUDED
5,6 [50,000[BOMB EXCLUDED
s e /"\\ 7,8 15,000 [BOMB EXCLUDED

/

514;‘,_ L i § FRAGMENT MASS (02)

[

FIG.2-O3. VARIATION OF THE VULNERABILITY OF THE H.E.
BOMB WITH THE VALUE TO WHICH FRAGMENT MASS IS
CONTROLLED, THE CHARGE/CASE WEIGHT RATIO HAVING BEEN
OPTIMISED UNDER EACH OF TWO CONDITIONS, NAMELY THAT
THE AIRCRAFT IS AND IS NOT CARRYING AN H.E. BOMB.
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T.N. GW.120.

F1G.2.04.

ALLOWANCE HAS BEEN MADE FOR THE EFFECTS OF SMALL VALUES OF THE
WARHEAD LENGTH/DIAMETER RATIO (Vv SECT. 27)
PROBABILITY A MINIMUM VALUE OF S IS DEFINED BY THE REQUIREMENT THAT R 22 :THESE CURVES
. OFDESTRUCTION ARE REPRESENTATIVE OF CASES WHERE THE OPTIMUM “/w IS NOT THE MINIMUM (AS IT
WOULD BE WERE THE H.E.BOMB NEGLECTED N THE VULNERABILITY ASSESSMENT).
THE LEFT HAND END OF EACH CURVE CORRE SPONDS TO THE MINIMUM PERMISSIBLE
BUT THE RIGHT HAND END DOESNOT CORRESPOND TO THE MAXIMUM.

\ @ —

=5

VR O b
,—\

\/ @ \\

O-5 |

lo-3 FILLING OF WARHEAD AND BOMB= T.N.T

: /7L E w-(;!{? "
® ' 7 1000 | 150
2

8 |I15000| 100 | 65

o2 9 |I15000|250 |95

llo [1Is000|200 | 98

: Il 15000(180 |95

[l2 [Im,000|100 |95

oy CHARGE | CASE WEIGHT RATIO ,

14 16 -8 2:0 22 24 26 Z8

FIG.2:0O4. OPTIMUM VALUES OF THE CHARGE /CASE WEIGHT
RATIO OF WARHEADS OF VARIOUS WEIGHTS, CONTROLLED TO GIVE
Ya 0z, (2:2:1) FRAGMENTS, AGAINST A TYPICAL FUTURE BOMBER,
THE H.E. BOMB LOAD BEING CONSIDERED VULNERABLE .
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T.N. G.W. 120.

FI1G.2-05.

SEODB::-‘:;LYCHON PRESSURE CABIN TRANSPARENCIES
NOT INCLUDED
(o)
-8
6

FILLING OF WARHEAD
AND BOMB - T.N.T.

41 IALTITUDE H.E.
(F1) [BOMB |
| [50,000 [INCLUDED

2 15,000 INCLUDED
3 15,000 INCLUDED
4 [50,000 [EXCLUDE!
‘2 5 18,000 ExcLUDED)
& [15,000 EXCLUDED

| .
—— OPTIMUM % TO ATTACK AIRCRAFT EXCLUDING H.E. BOMB
—-- OPTIMUM % TO ATTACK AIRCRAFT INCLUDING HE. BOMB

o 20 40 60 80 joo
EXPLICIT MISS DISTANCE (FT.)

FI1G.2-O5. VARIATION OF THE PROBABILITY OF DESTRUCTION
WITH EXPLICIT MISS DISTANCE FOR A 150 LB.WARHEAD
CONTROLLED TO GIVE 5Oz (2:2:1) FRAGMENTS,TO ILLUSTRATE
THE EFFECT OF INCLUDING THE H.E. BOMB IN THE VULNERABILITY
ASSESSMENT : FRAGMENT CONE DEFINED BY THE VARIABLE _n~_.
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FIG.2-07.
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T.N. G.W. 120.

PROBABILITY PRESSURE CABIN TRANSPARENCIES AND
OF DESTRUCTION H.E. BOMB LOAD NOT INCLUDED
)
S
e o ]
FT.)  [SteRa
| [50.000 iRIABLE
| 2 115,000 VARIABLE
.8 ! 3 o000 4-0
\ 4 5000 4.0
FILLING OF WARHEAD :-T.N.T.
®
| RBRIRTRE St ton | ®1
T <))
- |
| |
-4 . i . . I
' |
| |
: I _ \\‘\‘
o

o 20 40 60 80 100
EXPLICIT MISS DISTANCE (FT.)

FIG.2-O8. VARIATION OF THE PROBABILITY OF
DESTRUGTION WITH EXPLICIT MISS DISTANCE FOR A

150 LB. WARHEAD, CONTROLLED TO GIVE }0Oz, (2:2:)
FRAGMENTS, TO ILLUSTRATE THE EFFECT OF VARYING L.



gwipli2e40.
T.N. G.W. 120.

FIG.2-069.

PROBABILITY OF PRESSURE CABIN TRANSPARENCIES AND
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FIG.2:-09. VARIATION OF THE PROBABILITY OF DESTRUCTION

' FRAGMENT VELOCITY DUE TO HE. FILLING
WITH THE RATIO A = o e o VELOCITY DUE TO T.NT,

FOR A I50LB. WARHEAD CONTROLLED TO GIVE ‘-};oz. (2:2:1)
FRAGMENTS.
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FIG.2:13. VARIATION OF THE PROBABILITY OF g
DESTRUCTION OF THE CREW AND ENGINES TOGETHER

AND OF THE H.E. BOMB LOAD ALONE WITH THE ANNULAR
RADIUS OF A I150LB, HOLLOW WARHEAD, CONTROLLED TO

TO GIVE z OZ. (2:2:1) FRAGMENTS, AT A MISS DISTANCE

OF 45FT.
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FIG.2-14.

PROBABILITY FILLING OF WARHEAD AND
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FIG.2:14. VARIATION OF THE PROBABILITY OF
DESTRUCTION OF THE CREW AND ENGINES TOGETHER
AND OF THE H.E. BOMB LOAD ALONE WITH THE ANNULAR
RADIUS OF A I50LB, HOLLOW WARHEAD, CONTROLLED TO
GIVE 4oz (2:2:1) FRAGMENTS, AT A MISS DISTANCE

OF 95 FT.

;—#‘




r " ' ™
awiPi264 6. '
T.N. G.W.120.

FIG.2-15.

PROBABILITY OF
DESTRUCTION .

I'Oﬁ-\

™
= | N ®
IESNIAN
S

3 N\,
-2
ALT| Q
Ny | [8900d 45
2 |1s,000| 45 Mgt ™
3 [s0p0d o5 @®
CONDITIONS AS IN FIGS. 213,214
4]50001 93 | PRESSURE CABIN TRANSPARENCIES NOT

% g INCLUDED AS YULNERABLE AREA.
7.3 3 6
ANNULAR RADIUS (INS.)

Vi

& [ 4 3 2 [
THICKNESS OF H.E. FILLING (INS)

FIG.2:15. VARIATION OF THE PROBABILITY OF
DESTRUCTION OF THE WHOLE AIRCRAFT, INCLUDING
THE H.E. BOMB LOAD, WITH THE ANNULAR RADIUS OF
A |50 LB. HOLLOW WARHEAD CONTROLLED TO GIVE

3".02. (2:2:1) FRAGMENTS.
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(Technical Note No. GW 120)
FURTHER STUDIES OF THE DESIGN OF GUIDED
WEAPON WARHEADS, WITH A DESCRIPTION OF A
NOMOGRAPHIC METHOD OF CALCULATING
LETHALITY, by J.K.S. Clayton, G.C.A. Ruston,
F.I. Reynolds, and others. June '51, 79 pp. incl.
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A previously developed theory for calculating the
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fragmentation of a cylindrical guided missile war-
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under particular conditions of fragment mass, total
warhead weight, charge/case weight ratio, fuze burst
range, and height of-attack. The criteria for the
destruction of the entire aircraft were; lethal damag¢
to at least-two of the four engines; injury to the two
pilots .sufficient to incapacitate both; or, at heights
greater than 43,000 feet only, the penetration of the
pressure cabin transparencies., The nomogram has
proved useful over a period of soine months in appli-
cation to a wide range of calculations.
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